FSML
FSML
Home
People
News
Publications
Contact
Light
Dark
Automatic
Article-Journal
(De)-regularized Maximum Mean Discrepancy Gradient Flow
We introduce a (de)-regularization of the Maximum Mean Discrepancy (DrMMD) and its Wasserstein gradient flow. Existing gradient flows …
Zonghao (Hudson) Chen
,
Aratrika Mustaf
,
Pierre Glaser
,
Anna Korba
,
Arthur Gretton
,
Bharath K. Sriperumbudur
Cite
arXiv
The Impact of Loss Estimation on Gibbs Measures
In recent years, the shortcomings of Bayes posteriors as inferential devices has received increased attention. A popular strategy for …
David T. Frazier
,
Jeremias Knoblauch
,
Christopher Drovandi
Cite
arXiv
Comparing Scale Parameter Estimators for Gaussian Process Regression: Cross Validation and Maximum Likelihood
Gaussian process (GP) regression is a Bayesian nonparametric method for regression and interpolation, offering a principled way of …
Masha Naslidnyk
,
Motonobu Kanagawa
,
Toni Karvonen
,
Maren Mahsereci
Cite
arXiv
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Intractable generative models are models for which the likelihood is unavailable but sampling is possible. Most approaches to parameter …
Ziang Niu
,
Johanna Meier
,
François-Xavier Briol
Cite
arXiv
Generalized Bayesian Inference for Discrete Intractable Likelihood
Discrete state spaces represent a major computational challenge to statistical inference, since the computation of normalization …
Takuo Matsubara
,
Jeremias Knoblauch
,
François-Xavier Briol
,
Chris Oates
Cite
arXiv
Robust Generalised Bayesian Inference for Intractable Likelihoods
Generalised Bayesian inference updates prior beliefs using a loss function, rather than a likelihood, and can therefore be used to …
Takuo Matsubara
,
Jeremias Knoblauch
,
François-Xavier Briol
,
Chris Oates
Cite
Code
arXiv
A General Method for Calibrating Stochastic Radio Channel Models with Kernels
Calibrating stochastic radio channel models to new measurement data is challenging when the likelihood function is intractable. The …
Ayush Bharti
,
François-Xavier Briol
,
Troels Pedersen
Cite
arXiv
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Stein’s method compares probability distributions through the study of a class of linear operators called Stein operators. While …
Andreas Anastasiou
,
Alessandro Barp
,
François-Xavier Briol
,
Bruno Ebner
,
Robert E. Gaunt
,
Fatemeh Ghaderinezhad
,
Jackson Gorham
,
Arthur Gretton
,
Christophe Ley
,
Qiang Liu
,
Lester Mackey
,
Chris. J. Oates
,
Gesine Reinert
,
Yvik Swan
Cite
arXiv
Interlocking Backpropagation: Improving depthwise model-parallelism
The number of parameters in state of the art neural networks has drastically increased in recent years. This surge of interest in large …
Aidan N. Gomez
,
Oscar Key
,
Kuba Perlin
,
Stephen Gou
,
Nick Frosst
,
Jeff Dean
,
Yarin Gal
Cite
Code
arXiv
Composite Goodness-of-fit Tests with Kernels
We propose kernel-based hypothesis tests for the challenging composite testing problem, where we are interested in whether the data …
Oscar Key
,
Arthur Gretton
,
François-Xavier Briol
,
Tamara Fernandez
Cite
jmlr
»
Cite
×