FSML
FSML
Home
People
News
Publications
Contact
Light
Dark
Automatic
Paper-Conference
Kernel Quantile Embeddings and Associated Probability Metrics
Embedding probability distributions into reproducing kernel Hilbert spaces (RKHS) has enabled powerful nonparametric methods such as …
Masha Naslidnyk
,
Siu Lun Chau
,
François-Xavier Briol
,
Krikamol Muandet
Cite
Code
arXiv
Prediction-Centric Uncertainty Quantification via MMD
Deterministic mathematical models, such as those specified via differential equations, are a powerful tool to communicate scientific …
Zheyang Shen
,
Jeremias Knoblauch
,
Sam Power
,
Chris. J. Oates
Cite
Code
arXiv
Nested Expectations with kernel Quadrature
This paper considers the challenging computational task of estimating nested expectations. Existing algorithms, such as nested Monte …
Zonghao (Hudson) Chen
,
Masha Naslidnyk
,
François-Xavier Briol
Cite
Code
arXiv
Cost-aware Simulation-based Inference
Simulation-based inference (SBI) is the preferred framework for estimating parameters of intractable models in science and engineering. …
Ayush Bharti
,
Daolang Huang
,
Samuel Kaski
,
François-Xavier Briol
Cite
Code
arXiv
Robust and Conjugate Spatio-Temporal Gaussian Processes
State-space formulations allow for Gaussian process (GP) regression with linear-in-time computational cost in spatio-temporal settings, …
William Laplante
,
Matias Altamirano
,
Andrew Duncan
,
Jeremias Knoblauch
,
François-Xavier Briol
Cite
Code
arXiv
Decision Making under the Exponential Family: Distributionally Robust Optimisation with Bayesian Ambiguity Sets
Decision making under uncertainty is challenging as the data-generating process (DGP) is often unknown. Bayesian inference proceeds by …
Harita Dellaporta
,
Patrick O'Hara
,
Theodoros Damoulas
Cite
arXiv
Conditional Bayesian Quadrature
We propose a novel approach for estimating conditional or parametric expectations in the setting where obtaining samples or evaluating …
Zonghao (Hudson) Chen
,
Masha Naslidnyk
,
Arthur Gretton
,
François-Xavier Briol
Cite
Code
arXiv
Conformal Counterfactual Inference under Hidden Confounding
Personalized decision making requires the knowledge of potential outcomes under different treatments, and confidence intervals about …
Zonghao (Hudson) Chen
,
Ruocheng Guo
,
Jean-François Ton
,
Yang Liu
Cite
arXiv
Outlier-robust Kalman Filtering through Generalised Bayes
We derive a novel, provably robust, and closed-form Bayesian update rule for online filtering in state-space models in the presence of …
Gerardo Duran-Martin
,
Matias Altamirano
,
Alexander Y. Shestopaloff
,
Leandro Sánchez-Betancourt
,
Jeremias Knoblauch
,
Matt Jones
,
François-Xavier Briol
,
Kevin Murphy
Cite
Code
arXiv
Robust and Conjugate Gaussian Process Regression
To enable closed form conditioning, a common assumption in Gaussian process (GP) regression is independent and identically distributed …
Matias Altamirano
,
François-Xavier Briol
,
Jeremias Knoblauch
Cite
Code
arXiv
»
Cite
×